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Using the method of a linear instantaneous heat source, we consider nondestructive techniques for 

determining the thermophysical characteristics of materials. A procedure for estimating errors in the 
techniques suggested is given. 

At the present time in the scientific literature a considerable body of works are available that are concerned 

with methods of nondestructive determination and control of the thermal properties of materials on the basis of the 

action of an instantaneous heat source [1-4 ]. In [4 ], two-dimensional axisymmetric nonstationary heat conduction 

problems are considered, such as those of thin circular and annular heat sources of zero heat capacity acting in the 

plane of contact between two bodies with different thermophysical characteristics (TPC). 

Below we consider methods based on application of a linear instantaneous heat source with zero heat 

capacity that complement the range of problems considered in [4 ]. The merits of the methods suggested are the 

comparative ease of their technical implementation and the small time needed for performing an experiment. 

Let us now consider a system consisting of two semi-infinite bodies with different thermophysical charac- 

teristics and of a source in the form of a straight line located in the plane of their contact. At the initial time instant 

the source liberates an amount of heat Q instantly and uniformly over the entire length (on a per unit length basis). 

It is required to find the temperature field in the plane of contact of the bodies at all the subsequent time instants. 

We will assume that the heat capacity and the region of the heat source localization are negligibly small compared 

to the heat capacity and dimensions of the two semi-infinite materials, which are in ideal thermal contact with the 

linear heat source. We will place the coordinate origin on the boundary plane and the linear source along the y 

axis. The initial temperature of the system will be taken as zero. 
We have 
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under the conditions 
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T (x, 0+, 0 = T (x, _0, O ,  T (x, z, 0) = 0 ,  

21 0T = 22 
z= _0 z=0+ 

r ~ 0  Izl ~ ~ ,  

/ (x, z, ~) = ~ ~ (x) ~ (r) x (z I0, ~ 1), 

where 6(~) is the delta-function; g(z[0, e ]) is the characteristic function of the interval [0, e ], i.e., 

1, z e  [ 0 ,~ ] ,  
X ( z [ 0 , ~ ] ) =  0 ,  z e  [0,~1.  

The solution of system (1) in the boundary plane with e ~ 0 has the form 

o { i x lix;i 2~z-(2~-2~)  2, exp - - 2 2 e x p  - + 

+ ~ - e x p  - ~ - ~ -  , ( ~ - ~ - l - 1 ) f e x p -  ( ~ - ] - l - l ) ~ - r  d ~ -  

(2) 

where 

- -  - -  , 

a2) al a 2 ' 

Q is the amount  of heat liberated instantaneously by the source over a section of unit length (J /m);  x is the distance 

reckoned along a normal from the line of source action (m); r is the time reckoned from the instant of action of a 

heat pulse (sec); 21 and 22 are the thermal conductivities (W/(m.K) ) ;  al and a2 are the thermal diffusivities 
(m2/sec) of the investigated and standard materials. 

Expression (2) is rather complex for direct determination of thermophysical characteristics. Expanding the 

right-hand side of formula (2) into a series and discarding terms higher than the third power with respect to x, we 
obtain 

Al 22 ] 
- - + - - x  2 

T (x, r) = ~ (21Q 1 al a2 (3) 
+;t2) r 21 +22  ~-r " 

In order  to ascertain the adequacy of solutions (2) and (3), as well as the admissible limits for the 

application of approximate solution (3), we calculated on a computer the temperature fields for different values of 

the coefficients 2 and a. The results obtained confirm that as the value of x decreases and that of r increases, the 

difference between the temperatures calculated from expressions (2) and (3) tends to zero, whereas at r = 6 sec it 

becomes rather small and comparable with random errors of measurements (for x _< 2- 10 -7 m). The value of r can 

be limited to 10-12  sec, since at larger values of time the temperature depends virtually on the magnitude of 

(21 +/12). Expression (3) is valid if (x2/4amin z) << 1, i.e., at large Fourier numbers, Fo = 4aminr/X 2, which makes 
it possible to obtain an approximation accurate to (1/Fo) 2. 
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Thus, formula (3) can be used in e n g i n e e r i n g  calcula t ions  of temperature fields by the method of a linear 

instantaneous heat  source at small values of x. 

It is seen from the structure of function (3) that, using some other  material with known thermal properties 

(standard material) ,  we can determine the thermophysical characteristics of the material investigated by recording 

the temperature in the plane of their separation at prescribed time instants. 

Solution (2) for the temperature field on the line of heat source action (x = 0) has the form 

Q (4) 
T (0, v) = 2,'r (21 + 3"2) r "  

From this, assuming the coefficient 2 2 to be known, we obtain a formula for the thermal conductivity coefficient of 

the material under  investigation: 

Q - az, (5) 
21 = 2~r T (0, r) 

where ~ is the time instant at which we perform temperature recording T(0, r) .  

For heat pulses of finite duration z* 

21 - Q I n ( r . )  
2art* T (0, r) ~ - )'2- (6) 

If we measure the temperature at a point at distance x from the linear heat source (in the plane of contact 

between the material investigated and the material with the known thermophysical characteristics) at t ime instants 

r 1 and a:2, then with allowance for Eq. (3) we obtain 

,21 = M - ) .2 ,  al = ) . 1 / (  K M  - 22/a2)  , (7) 

where 

4 (A 1 - A2) 
K =  

2 
x (AI/~ 2 -- A2 / r l )  

M =  (1 - K x 2 / 4 Z l ) / A 1 ;  A i =  2 x r i T i / Q ,  i =  1 , 2 .  

By measuring at a prescribed time instant r l  the temperature at two points of the boundary  plane of the 

investigated and s tandard materials, one of which lies on the line of heat source action, while the other  at the 

distance xl from the source, with account for solution (3) we obtain the formulas [5 ]: 

Q - ~-2 ; (8) 
).1 = 2~Zl T (0, r l )  

/{20 tr~ (0, q)-T~ (x~, q)l ~} 
= ( o ,  - " 

(9) 

To increase the accuracy in determining the thermophysical characteristics of the material investigated 

after  the heat pulse supply, we record the temperature at a prescribed time instant Zl at the same points of the 

boundary  plane (x = 0 and x = xj)  for a system consisting of two s tandard specimens. Then  the formulas for 21 

and al of the material investigated have the form 

)'1 =).2 - 1 ' al = a2 2~/---  ' 
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where 

IT 1 (0, r l )  - T 1 (XI,  r l )  ] T 2 (0, r l )  T 1 (0, ~1) 

M =  IT 2 ( 0 , r l ) _  T 2 ( x l , r l ) l T  1 (0, TI) ;  N =  T2(0,  r l ) ;  

TI(0,  T1), T1 (Xl, ~1) are the temperatures measured in the plane of contact of the investigated and s tandard 

materials; T2(0 , TI) , T2(Xl, T1) are the temperatures measured in the contact plane of the system of two s tandard  

specimens. 

Thus,  by performing preliminary measurements for a system of two s tandard materials it is possible to 

exclude the effect of systematic errors in measurements of Q and x on the accuracy of determining thermophysical  

characteristics. 

If in the considered "investigated mate r ia l - s t andard"  system we replace the material with the known 

thermophysical  characteristics by a heat insulator, then on the basis of solution (2) the temperature on the surface 

of the investigated specimen under  the action of an instantaneous linear heat source with T --, 0 and 22 = 0, a2 = 0 

will be described by the relation [ 1 ] 

T (x, r) = .~,,~ir exp - 

Recording the time instant r l  after  the heat pulse supply, when the relationship between the temperatures at two 

points Xl and x2 (0 < x 1 < x 2) attains a certain specified value 

T(x 1, r 1) =nT(x2, T1), n > 1, 

we obtain expressions for the desired coefficients [6 ]: 

2 2 Q Xl (12) X2 -- Xl ~'1 = exp -- . 
al -- 4T 1 In n ' ZTr T (x 1 , T1) T 1 4at r  l 

If measurements  of temperature after  the heat pulse supply are carried out on the line of heating, T(0, T), 

and at a given distance from it, T(xl, T) and the time instant zl is recorded under  the condition 

T (xl,  TI) = T (0, r l )  - T (x 1, r l ) ,  (13) 

then the thermophysical  characteristics of the material investigated with allowance for Eq. (11) can be determined 

by formulas of [71: 

2 
x I Q [1 + exp (In 0.5) ] (14) 

al = 4 In 0.5 ' 21 = 2~T 1 [T (0, TI) - T (Xl,  T1) ] " 

To increase the accuracy in determining thermophysical characteristics, it is necessary first to conduct the 

above measurements  of the temperatures T(0, r) and T(xl, T) on the material with the known characteristics and 

to record the characteristic time T 0 that corresponds to equality between the excess temperature T(xl, T0) at a point 

at a prescribed distance xl from the line of heating and the difference of the excess temperatures T(0, T 0) -T (x l ,  

TO). Then  we obtain [8 ] 

T O IT (0, To) - T (xl,  - r0)} r 0 (15) 
al = a2~-l '  21 = 22 [T(0 ,  T1) T ( X l , r l ) ] r  I ' 

where 22 and a2 are the coefficients of thermal conductivily and thermal diffusivily of the material with the known 

characteristics. 
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This type of approach allows one to eliminate systematic errors in measurements to a large degree and to 

avoid direct and indirect determinations of the values of Q and x. 

In conducting thermophysical measurements, temperature sensors frequently experience the effect of pe- 

riodic random electric and magnetic fields. As a result, the desired output signal of the sensor, for example, the 

emf of a thermocouple, can be superimposed on random interference. Therefore, when a temperature sensor is 

exposed to the action of random periodic interferences, it is worthwhile to develop methods of nondestructive control 

of the thermophysical characteristics for those materials, in which the recording is made not of the absolute values 

of temperature, but rather of its integrated values. 

Let us determine the integrated value of the temperature described by formula (4) over the time interval 

A I  = T 2 -- TI: 

T2 Q T2 
S 1 = f  T(0, r) d r -  In 

�9 1 2n(;q +22) r~ 
(16) 

and obtain an expression for the thermal conductivity coefficient 

Q in ~-~ _ 22" 21 - -  2~S (17) 

For heat pulses of finite duration r* 

S =  Q ( 
~ ( 2 1  + 2 2 )  Z* r2  

T2 T1 T* T 2 -- T*] ~ 
In _ .  r I In---------; + In ~ ; 

r )  

21= QK. - ~2, 
2~rr S 

(18) 

where 

K = T 2 In - -  
~2 TI T* T 2 -- T 
-- r* r I ln- - - - - - -~+ ln-------Z. 

~2 Zl -- ~ r l  -- ~ 

The thermal conductivity coefficient can be determined from formulas (16) and (17) in two ways: 1) we 

assign in advance the values for the time instants T1 and r2 with subsequent determination of the value of S; 2) we 

assign the values of rl and S with subsequent determination of the time instant T2. 

If under the action of an instantaneous heat source we first perform integration over the same time interval 

[rl, r2] for a system of two specimens with the same known thermophysical characteristics (standard-standard), 

then 

Q v2 (19) s2 = ~ In -/. 

From formulas (16) and (19) it follows that 

s2 ) (20) 
;t 1 = 2 ~ - 1 22 , 

where 21 and 22 are the thermal conductivity coefficients of the investigated and standard specimens, respectively; 

S1 and $2 are the integrated values of temperatures obtained in the regimes of measurement and standardization 

over the time intervals [rl, r21. 
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We also obtained formulas for the coefficients of thermal conductivity and thermal diffusivity when the 

integrated values of the temperature S [9 ] are measured: for the time interval Ar = T 2 - T t at a point located at 

distance xl from the heat source line; for the time interval Art = rl  - r0 and At2 = r2 - to; for the time intervals 

AT = T -- r 0 at two points, one of which is located on the line of action of the heat source, while the other  is at 

distance Xl from it, and when the relationships between the integrated values of the temperatures on the line of 

action of the heat source and at the prescribed distance from it in the "s tandard-s tandard"  and "investigated 

mater ia l -s tandard"  systems attain a certain preassigned value. 

Analysis of the proposed formulas for the thermophysical characteristics of materials with recorded absolute 

and integrated values of temperatures  shows that the thermophysical characteristics of the materials are determined 

by a system of equations: 

221 22 2 ) 
1 al a2 

A1 --22t +'~2 1 22 1 +22 2 B 1 + C l ;  
(21) 

221 222 ) 
1 at a2 

A2-221 +`12 1 22 t +22 2 B z + C  z ,  

where A i and B i (i = 1, 2) are independent  of 22 and a; Ci depend on 22 and a; B i > 0, while the calculated values 

for kk and a are determined at C1 -- C2 -- 0: 

B2 - Bt 221 (22) 

221 = B2AI _ B I A 2  -222; al = (`11 +`12) K - ~ - '  

a 2 

where 

K = (221 + '!"2) At - A2 
B2 BI " 

To estimate the errors in the obtained values for the thermophysical characteristics of the materials,  we 

composed an auxiliary system: 

t 2: ,l 2 ) - -  . 3  r - -  

1 al  a2 
A1 - 22t +`12 1 1̀1 +`12 B1 

1̀1 1̀2 
_ _  3 1 -  _ _  

1 at a2 
A2 - 1̀1 + `12 1 1̀1 + `1~- B2 

+ Cth ; 

+ C 2 h  , h G  [0, 1 ] ,  

(23) 

(22) for the lhermophysical characteristics are obtained from which system (21) is obtained at h = 1 and formulas 

when h = 0. 
The  absolute errors in determining the coefficients 2 and a can be estimated by the differential of the 

functions 2(h) and a(h) at the point h = 0 (an increment of the argument h is equal to 1). We obtain 

Bz ICll +B1 IC21 (`it +`12) 2. (24) 
-< I B2 - BII 

a 
IAal  -(11 - a g l  Iz l +a  Ì 11 +`121 l ag t ) ,  
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where 

tAKI A2 levi  + A l  IC21 (21 +;tz)z 
-< 1 8 2  - 

The coefficient Ci (i--  1, 2) is a function of the difference A T  i between the actual (Eq. (2)) and 

approximated (Eq. (3)) temperatures. As the absolute values of Ci or ATi decrease, the accuracy of the procedures 

suggested increases. 

We carried out an experimental determination of the thermophysical characteristics of a number of heat- 

insulating materials (organic glass PMMA, foam plastics PS-I, PPU-104B). Measurements were performed by 

means of an automatic device [10] based on a "Vektor" personal computer using the method of a linear 

instantaneous heat source with recording, at a prescribed time instant, of the temperature at two points on the 

plane of contact between the investigated and standard specimens. 

As a material with known characteristics, we used foam plastic PS-4 (22 = 0.0435 W / ( m . K ) ;  a2 -- 
4.74-10 - 7  m2/sec). The relative errors in determining the coefficients of thermal conductivity and thermal 

diffusivity amount to 8 .1-8 .9  and 10.7-12.3%, respectively. 

Thus, using the method of a linear instantaneous heat source with recording of the absolute and integrated 

values of temperature, we have considered the developed techniques for determining the thermophysical charac- 

teristics of materials without destruction of their integrity and suggested a procedure for estimating the errors of 

the proposed techniques and presented the results of experimental determination of the thermal conductivity and 

thermal diffusivity of some heat insulating materials. 

N O T A T I O N  

x, y, z, space coordinates; r, time; ~t, thermal conductivity coefficient; a, thermal diffusivity coefficient; Q, 

amount of heat per unit length; S, integrated value of temperature; Fo, Fourier number; T, temperature. 
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